Stability of an Axially Accelerating String Subjected to Frictional Guiding-forces
نویسنده
چکیده
The dynamic response of an axially translating continuum subjected to the combined effects of a pair of spring supported frictional guides and axial acceleration is investigated; such systems are both non-conservative and gyroscopic. The continuum is modeled as a tensioned string translating between two rigid supports with a time dependent velocity profile. The equations of motion are derived with the extended Hamilton’s principle and discretized in the space domain with the finite element method. The stability of the system is analyzed with the Floquet theory for cases where the transport velocity is a periodic function of time. Direct time integration using an adaptive step Runge-Kutta algorithm is used to verify the results of the Floquet theory. This approach can also be employed in the general case of arbitrary time-varying velocity. Results are given in the form of time history diagrams and instability point grids for different sets of parameters such as the location of the stationary load, the stiffness of the elastic support, and the values of initial tension. This work showed that presence of friction adversely affects stability, but using non-zero spring stiffness on the guiding force has a stabilizing effect. This work also showed that the use of the finite element method and Floquet theory is an effective combination to analyze stability in gyroscopic systems with stationary friction loads.
منابع مشابه
Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملFriction Induced Transverse Vibrations of an Axially Accelerating String
The purpose of this study is to investigate the dynamic response of axially translating continua undergoing both the effect of friction and axial acceleration. The axially moving continuum is initially modeled as a string, neglecting its flexural stiffness; the response, with particular interest given to transverse vibrations and dynamic stability, is studied through numerical methods. A finite...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملTransverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity
Two-to-one parametric resonance in transverse vibration of an axially accelerating viscoelastic string with geometric nonlinearity is investigated. The transport speed is assumed to be a constant mean speed with small harmonic variations. The nonlinear partial differential equation that governs transverse vibration of the string is derived from Newton’s second law. The method of multiple scales...
متن کامل